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STATISTICAL STUDIES IN. STELLAR ROTATION II.

A Method of Analyzing Rotational Coupling in Double
Stars and An Introduction to its Applications

P.L. Bernacca

NASA, Goddard Space Flight Center
Greenbelt, Maryland

ABSTRACT

The coupling between the rotational velocities v 1 and

V
2

of the components of double stars has bearing on their

origin, on the problem of synchronism and on the distribu-

tion of angular momentum in dust and gas clouds. Since

the observations give the apparent velocity vk sin i k

(k = 1, 2), the only large scale approach is statistical

and it requires the knowledge of the probability density

(il' i2). When the existence of the equatorial break-up

velocity Vok is considered, one finds

. . . I

sol, so , 2.

=Y~ 2 =1, J F(y,,yL)[(i-Y)(IYT)J-

where F(yl, Y2) is the observed frequency function of Yl

and Y2 defined by Yk = vk sin ik/vo
k
. From the above

equation the bivariate distribution W(xl, x2 ) of X1 and x2, which

are k/vOk, is derived and the method of treating the obser-

vations is discussed.
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The study of W(xl, x
2
) for a sample of visual binaries

indicates that the regression X2 (xl) is nearly a linear

function with x2 (0) = 0.2 and x2(1) = 0.8 and that the array

probability density H(x21 xl) is maximum for x1 = x2 . A table

of correspondence between i and the average value of -2

is given in the range BO-FO. The proposed method of analysis

lends support to the existence of synchronism in closely

spaced binaries.

ESRO Fellow 1971 on leave from Asiago Observatory, Italy.
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I. Introduction

The study of the rotational correlation between components

of double stars has a bearing on a variety of astrophysical

problems. Among these the origin of binaries, their subse-

quent modes of evolution and the physical interactions in

closely-spaced systems are of primary interest. The study

may also give an insight into the distribution of angular

momentum among pre-stellar blobs in gas and dust clouds.

Whatever their origin, the present rotational status of short

period detached and semi-detached systems is thought to

reflect mainly physical processes such as tidal interactions

(Abt [1970], Plavec [1970] and references therein), mass

transfer (cf. Plavec [1970]) or evolution modes in the hydrogen

burning stage (Van den Heuvel [1970]). Most of these stars

are considered to be synchronized with the orbital motion

(Plaut [1959], Olson [1968], Plavec [1970], Van den Heuvel

[1970]). The inference of the existence of synchronism is

based on the assumption that the spin axes are perpendicular

to the orbital plane. The problem has four, degrees of free-

dom. Whereas the above assumption appears to be interesting,

it is certainly much too restrictive, a priori. The existence

of a preferential angle between the spins may, however, not

be independent of the early stages of evolution of a close

binary as suggested by Plavec (1970).



4.

Another interesting group of double systems is the

one constituted by wide pairs for which the existence of some

degree of coupling has been shown (Steinitz and Pyper [1970]).

Wide pairs are perhaps the most suitable to be investigated

in relation to their very early history since little or no

interaction has occurred and the components have evolved 'as

single stars. A quantitative evaluation of the difference in

coupling between such pairs and short-period binaries may

also tell us to what extent wide pairs have a different origin.

Rotational coupling refers to correlation between the spin

angular momenta. Since the observations give us the projected

rotational velocity v sin i we should first study the corre-

lation between the equatorial velocities vl and -2 of the

components by eliminating the aspect dependence.

The purpose of this paper is to consider this problem

from a statistical standpoint. We first develop an inter-

pretational theory of rotational correlation (Section II).

The proposed method is then discussed with regard to its

applicability to existing observations (Section III). The

theory is applied in Sections IV and V to a sample of visual

binaries, which have been the least studied for rotational

coupling. Consideration of eclipsing systems and spectroscopic

binaries is limited to show how the degrees ovf freedom in the

spin parallelism problem can be reduced (Section VI). Section

VII presents a summary and some final remarks.
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II. The Integral Equations Governing the Frequency

Distributions of the Apparent and True Rotational Velocities

The observations give the projected rotational velocity

Ik = yk sin ik (k = 1,2; omitted hereinafter). Therefore,

a study of the correlation between the true velocities vl and

y2 requires the knowledge of the inclination to the line of

sight k'. Attempts to evaluate i have been reviewed by

Maeder (1971). Recently, Hardorp and Scholz (1971) have

shown that for stars rotating near the critical velocity it

may be possible to derive i from the profiles of He IX4471

and Mg II4481. Maeder (1971) has proposed a double-entry

table which gives the value of i provided that v sin i and

the difference in magnitude AMv due to rotation are known.

The latter condition meets severe restrictions and the method

fails for a random sample of field stars, as is also pointed

out by him.

It cannot be excluded that future studies will lead,

in particular cases, to an observed value of i. Presently,

the only large-scale approach is statistical. It implies

assuming a probability density if (i i2) which permits

to derive the probability density W(vl, v2 ) from the observed

frequency distribution F(3i, u2 ) by means of integral equations.

It is customarily assumed that the axes of rotation of

the stars are oriented at random in space, and the function
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9/(k) SAAVA (1)

has been used for describing the frequency of occurrence of

i. The use of relation (1) makes it straightforward to com-

pute the mean value of v and the higher moments of the dis-

tribution function H(v) (Chandrasekhar and Munch [1950]).

However, it has been shown (Bernacca [1970], hereinafter

referred to as Paper I), that a more general frequency distri-

bution for the inclination i is given by

(2)

0
where m(e) gives the distribution of 9, and a is defined

by

AA= _ 'SvW'L =v mro SU4 $ (3)

where vo is the critical velocity (equatorial break-up) for

the s.tar for which u has been observed. Acc'ording to relation
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(2) we can use relation (1) only if all stars do not rotate

at all, or if their velocities can have any value, from

zero to infinity.

Relation (1) also places a restriction on the analysis

of the rotational properties of physical binaries. If we

assume that

to( 1, dk) l 1 o S ,dlV v,1 (4)

gives the fraction of binaries with i 1 and 2 in the interval

(dil, di2), we encounter two difficulties:

(a) the inclinations k are assumed to be independent

"a priori", which leads us to admit 'a priori'

that the angle between the spin axes is randomly

distributed, and

(b) there is no possibility of distinguishing physical

pairs from any artificial pair of stars, since re-

lation (4) does not indicate whether or not to each

primary we have attached its own secondary.

Suppose we have a sample of binaries whose apparent

velocities ik have been observed. Let -ok be the cirtical

velocity of the k-th component.
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Since vk s Vok, relation (3) implies that

O-K - k K S O /2

It follows that the number of binaries with primaries in the

range di and secondaries in the range di2 is, for any pair

of values (81, 0
2
),

The number of binaries in the interval (del, de2) is known,

since Ok is observed. Let this number be c(e1 , 02) de1 de2.

Then, the frequency distribution of i1 and i2 is given by

5 MA [ ,, ItVA (Co 5 C-1 8) (6)
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It is easily seen that relation (2) represents the

marginal distribution of ik by integrating (6) with respect

to ih .
If e1 and 82 are not correlated, that is, if the

function c(801 , 2 ) can be written as the product of two

univariate distributions ~1 ) and ~2 (8 2)' the function

uo(l', i2) degenerates to the product of two functions given

by relation (2) as was expected.

By combining relations (2) and (6) we can derive the

dependence of i2 upon i
1

by means of the array distribution

(21 1)2 

_______ (41)~~~~(7)

For the purpose of illustration we have plotted in Figure 1

the function ,(i22 il) for the case in which (81 , 62) is

which is a result not inconceivable in stellar rotation. The

dashed line shows the function (1) for comparison. A frequency
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function peaked toward large value of v sin i, like that of

Be stars (Paper I) would give an extremely tight

correlation between i2 and il for companions having the same

apparent velocity as the primary.

By considering now the relations

XK 3 SL 3 '9
zoK 5>n-S 4co

we can obtain the frequency distribution W(xl, x2 ) from

relation (5) and the observed (801 , e2 ) in the usual way

(cf. Trumpler and Weaver 1953). We find

o(S SA, SXi V 2, 2 (.,)(co4o) =

The above equation can be written in terms of the frequency

distribution F(Y1, y2) of Y1 and y2 defined by yk = k/vok ' as

J0

(X2 2, ) (x,,x(yy Fy, /

where R = (x1 - y
1
2 ) (x

2
-y 2 ) (1 - y 2) (. -y

2
2).

Relation (6) and (2) can also be easily written in terms of

F(y
1
, Y2) and the marginal distribution Fk(yk) respectively.
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It appears that the knowledge of W(xl, x2 ) through

to(l1, 2), or of Hk (xk) through ik(ik) depends on the

location of the observer in space. This restriction is,

however, of some utility. Suppose we wish to compare two

or more samples of stars, each sample located in a different

part of the galaxy. If there are sufficient reasons to

believe that the distribution H(v) is the same in each

sample, different observed distributions F(v sin i) may

imply that V(i) is different for each sample. Such an

inference may give valuable information about the orientation

in the galaxy of the spin axis of the stars. It can also

be shown that the proposed equations take into account

selection effects with respect to the inclination i. Finally,

the dependence of xk upon xh can be described by means of the

array distribution H(xkl Xh) which is

H (xelxh)= C,(x,,x)/H,(r X) (9)

The marginal distribution Hh(xh) is easily found to be

(see, also Paper I):
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j Y h FhlY), (10)

0

In the next section we shall discuss how to apply relations

(8) and (9) to actual observations.

III. Discussion

Whatever the form of the function #i(i), the correct

procedure for deriving H(v) has been described by Chandrasekhar

and Munch (1950). This procedure implies assuming a function

H(v; a _l...,an) with a number of parameters al,...,a , and using

the appropriate integral equation, fitting the computed

distribution F(u) to the observed histogram. If the observed

distribution F(u) has not a simple form, it may be difficult

to decide a priori, which model function is most suitable

for-treating the problem. A family of univariate distribu-

tions H(v) of the Van Dien (1948) type, is given by

H (2)= Co .~z. .Z 2 -

H(~) (s- F~r,) dC - (t+kAFm )] (11)
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Here k is a third parameter in addition to j and Em. If k = 1,

relation (11) reduces to the function of Chandrasekhar and

Minch (1950).

Deutsch (1970) has used bimodal Maxwellian distributions

in the discussion of "Y" and "0" populations of rotating

stars. His approach requires special attention because it

is independent of any form for i(i). The starting point of

Deutsch's work is that if a vector V is isotropic, the

distribution of the scalar V is Maxwellian. The above result

is based on the assumption that, when the vector 0 = jV is

decomposed into components along Catesian axes, the distri-

bution of any component, say Cz, is independent of the other

two components (nx and Qy in this case). The assumption

makes it possible to write

N(Ax..fl.) I, j1Y J12 -x (12)

with obvious meaning of the symbols. This implies that for

any pair of values of, say, ax and fy , we can have any

value for Qz If we consider that n = jV Y jVo, V0 being

the critical velocity, it follows that a stochastic dependence

exists among x', Qy and nz and that relation (12) no longer
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holds. A procedure for describing the rotational properties

of the binaries is therefore suggested as follows.

First, we consider the histogram of the velocities

Yl = xl sin i 1 of the primaries and derive the true distri-

bution H
1
(xl ) using the fitting procedure previously described

and the relation (Paper I):

1/2(YI

F,(Y,)=g~d_ !- L ( cx, J) x, (d x1

which is the solution of (10) with respect to F1(y1). Now,

relation (8) can be written as:

fXi

H (X.1X ) XIX)| yF i (YI) # (x.y,) Y (14)9 (H yX2~,11 2. 112.4)

which permits us to derive the conditioned distribution

H(x 2 j x
1
) when P(x2 1 yl) is known. The conditioned distribution
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¢(x2 1 Yl) may be found using relation (13) when F1(y 1
) is

replaced by the array distribution F(y2 1 y1), which is observed.

The resulting P(x2 1 Y1) may however be affected by the

uncertainty in the fitting owing to a generally small number

of stars in each yl-array, leading to an appreciable error

in the evaluation of the integral (14).

By considering, then, the above T(x2 J y1) to be a first

approximation result, we can derive the conditioned distribu-

tion f(yll x2) by means of

W() XL)( y X)=- F(S)i ( xx1 y,) (15)

where H2(x2) is the marginal distribution of the secondaries

with respect to x2, obtained in the same way as for H1(x1 ).

We finally have

('- IYX)' _ j x, XI H (x, I xz)dx,
y(yI d y , ) 1/

Now H(xll x2 ) may be assumed to be a function of the type

given in equation (11) and we can fit f(yl x
2
) as computed
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through (16) to the same function given by (15). Finally,

relation (9) solves the problem completely.

The method of analysis thus far developed depends on

knowledge of the critical velocity Yo for each star. Values

of v for a wide range of masses and spectral types are
-o.

known (cf. Slettebak [1966], Hardorp and Scholz [1971]) and

depend on the model chosen to represent a rotating star. The

maximum observed v sin i in the Slettebak system are systemati-

cally lower at each spectral type than expected if the fastest

rotators are edge-on stars near to the equatorial break-up.

The work by Hardorp and Strittmatter (1968) and Hardorp and

Scholz (1971) has shown that the discrepancy should be

attributed to narrowing effects in the line profile when

gravity darkening is neglected in the calibration of v sin i.

The model values of v reduced to the Slettebak system agree-o

well with the largest v sin i throughout the range B2-FO

(see Hardorp and Scholz [1971]). Thus, assuming the "corrected"

value of vo or the maximum observed velocity, (v sin i)o' as

the upper limit to the true velocity, may be a matter of

personal choice. In the following we assume (v sin i)o to be

the upper limit. Figure 2 presents an updated trend of the

largest velocities in the Slettebak system as a function of

spectral type for main-sequence single stars (visual systems

included) and for spectroscopic binaries. Be stars,

stars with shell characteristics, Ap, Am and Apec
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stars are excluded. The two curves have been derived from

the Asiago Catalogue of Rotational Velocities (Bernacca and

Perinotto [1970], [197)) by the following procedure. Stars of

spectral type BO, B1 and B2 have been grouped together and

the three largest v sin i values have been averaged. The

result is plotted at the spectral type B1. The next step

considers stars of spectral types Bl, B2 and B3, and the

average value is plotted against B2. This procedure takes

into account both the uncertainty of one tenth of spectral

class and that v sin i for a star is affected by a large

error. The curves shown in Figure 2 may be assumed to give

a characteristic value of (v sin i)
°

along the main sequence.

In the range A3-A6 and F0O-F7 the spectroscopic binaries have

lower values of (v sin i )o than single stars, while earlier

than A2 there seems to be no difference. The result should

not be considered as definitive since the Asiago Catalogue

is biased in the binary stars section, insofar as it includes,

in addition to well-established cases, also stars reported

as suspected binaries. The values of the model critical

velocities vo reduced to the Slettebak system by Hardorp and

Scholz(1971) agree well with the solid curve in Figure 2 in

the range B5-FO. The discrepancy earlier than B5 should be

attributed to the lack of Be stars in the present curve.

For practical purposes in treating visual binaries we shall

assume the values of (v sin i)o listed in Table 1, which have

been approximated to the nearest high 25 km/sec.
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IV. Observational Evidence of Rotational

Correlation in Visual Binaries

The correlation between ul and u2 for 50 visual pairs

has been recently examined by Steinitz and Pyper (1970).

They found a linear correlation coefficient of 0.46 in con-

trast to a value of 0.001 for pairs formed by matching to

each primary a secondary at random. According to the above

authors the coupling between ul and u2 does not depend on

selection effects in the limiting magnitude and on the small

difference in spectral type between the components. In

Table 2, 34 visual double stars are presented. They have

been taken from Slettebak (1963) according to the following

criteria:

(a) Both components have spectral type earlier than F3

and the same luminosity class in the range IV-V.

(b) Be, shell stars, Ap, Am and Apec stars are excluded.

Figure 3 is a plot of u2 vs. ul. The straight lines

are the regressions 1(Tu2 ) and -2(Ul ) given by the following

relations

u. = 42 + (0.76 ± 0.12) u2 km/sec.

u- = 35 + (0.74 ± 0.12) 1ul km/sec.

The correlation ratio is 0.75. The probability of having by

chance a correlation ratio greater than or equal to 0.75 with
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34 observations is of the order of 106. The correlation

ratio for the fractional velocities Yk = uk/vok is 0.73.

The tighter correlation found for the program Sample with

respect to the sample analyzed by Steinitz and Pyper is due

to the omission of binaries with components of type Am and

Ap.

The parameters of the distributions F1(y1) and F2(y2)

are presented in Table 3. They indicate that the distribution

of the secondaries is nearly symmetrical around the average

of Y2 and flatter than a normal law. The distribution of the

primaries appears to be more similar to a Gaussian as far

as the peakedness is concerned but it is more skewed toward

large values of Y1 than the distribution of the secondaries.

On the other hand, both the mean values of Yk and the variances

are the same. It cannot be excluded that with a larger number

of data we could be able to distinguish better between Fl(Yl)

and F2(y2). In the following we shall assume a unique

frequency distribution F(y) for both components and we will

use different indices for the purpose of notation only. This

assumption will yield, of course, the same dependence of x2

upon xl as for that of x1 upon x2, but it permits us to

consider a sample of 68 stars.
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V. Coupling Between the Equatorial Velocities

_1 and Y2 in Visual Binaries

The observed frequency function of the single components

(marginal distribution) is represented by the histogram in

Figure 4. The blocks are rather large for the following

reasons; First, an error of 10% in u and vo yields an error

of 20% in y. Secondly, for small values of y we have too few

stars.

A simple solution is indicated by the dashed line in

Figure 4. This is the marginal distribution H1(x 1
) = H2 (x2 )

with.

2 X,X - X0 

H. (x ,)I C (17)

where xo = 0.5, s - 0.4 and C is the normalization factor.

The solid curve is the marginal distribution F1(y1) computed

using relation (17) and (13) by numerical methods. It is

seen that F1(Yl) represents the main features of the histo-

gram. The average value of xl is 0.5 and the dispersion is

0.26. The corresponding moments of F1(Y 1) are 0.43 and 0.23
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which may be compared with the observed values 0.45 and 0.26

(Table 3). The slight discrepancy is due to having neglected

a number of rapid rotators in the fitting of F
1
(y 1) to the

histogram. In order to have a function F
1
(y 1) within all

the statistical errors (vertical bars in Figure 4) we would

have to consider the general form (11) with a suitable value

for k_ This would imply the existence of two normal populations

of rotating binaries and the size of the statistical errors

would introduce a personal bias in estimating the fraction

of one population to the other one. The distribution H 1(x 1
)

given by (17) appears to be-therefore acceptable within the

family of unimodal frequency functions. According to the

discussion in Section III, the conditioned distribution P(x21 y1 )

is required as the next step. Figure 5 presents the histograms

of the velocities Y2 for selected intervals of Y1 . They re-

present the observed array distribution F(Y2 1 y1 ). It is

clear that with 68 components it is hard to make a conditioned

histogram free from selection effects and with nicely small

statistical errors. However, there seems to be some regularity

as was expected. The dashed curves in Figure 5 are Gaussian

laws as relation (17) and give the required P(x2 1 y1 ). The

solid lines are the function F(y2J Y1 ), computed by means of

relation (13), which may be considered to represent the

observations with a reasonable degree of reliability.
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Before to derive f(YlI x2) from relation (15) it seems

correct to find a function b(x2l Y1) most free from the

particular choice of the intervals in yl used to build the

histograms of Figure 5. In Figure 6 the parameters of

~(x21 y1) have been therefore plotted against yl in order to

establish.the relations xo(Yl) and s(yl) and finally to use

the function

,/ .st(y,) l

f(Xl. y,) _ sC (xy: ) (18)

in (15). If the problem is well conditioned by a large

number of observations,. f(Yll x2 ) would turn out to be auto-

matically normalized for every x2. This may not occur in

a coarse fitting.and we are forced to proceed by trial and

error. In principle the fitting should involve also F1(yl).

In this application we fix F
1
(yl) to be the one previously

derived and we try to find suitable functions xO(yl ) and

s(yl). The straight lines shown in Figure. 6 (s = 0.23 and

x
o = 0.05 + 1.055 yl) are the final relations which by means

of (18), (17) an:d (15) give the required array distribution

f(Yl x2 )' Three particular curves are shown ih'Figure 7

(solid lines) for x2 = 0.1, 0.5 and 0.9. They are affected

by a slight approximation but appear suitable to be treated
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by equation (16). As a final step we may assume the

function H(xll x2 ) to be a Guassian like (17) and fit

f(yll x2 ) obtained through (16) to that already found.

In Figure 7 the fitting is shown for H(xl 1
0.9) which

is the worst case encountered. The open circle gives the

computed f(yl l 0.9) which is seen to match the solid curve

satisfactorily well. The parameters of H(xll x2 ) result to

be x
o

= x2 and s = 0.25. The correlation between x
1
and x

2

is described by using the mode xlM of H(xll x2 ), the mean of

x
1
and the standard deviation ax. These quantities are given

x
1

in Figure 8 as a function of x2.

It is seen that the distribution H(xll x2 ) is hetero-

skedastic. Whereas the result appears interesting no conclu-

sions can be drawn about the real existence of this particular

kind of stochastic dependence since it depends on having

assumed s(y
1
) = constant from Fig. 6.

The marginal distribution Hk(xk) and the bivariate

W(xl, x2 ) are given in Table 4.

VI . Remarks on the Spin Parallelism Problem

Spectroscopic binaries and eclipsing systems could be.

in principle, treated by the method of analysis thus far

developed and illustrated, provided that a suitable value of

v is chosen. We should emphasize that vo is not necessarily
--o 

the critical velocity. It can be any other upper limit truly

recognized and Figure 2 shows that for spectrophotometric

systems it may in fact be smaller than the critical value.
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Since, however, the hypothesis of the spin perpendicular

to the orbital plane is generally used, we should examine how

the equations presented support the above inference. Let

H(xll x2 ) be the conditioned distribution of xl and f(yll x2 )

that of Y1 for each x 2 -array. Synchronism implies that

2
= x

1
if the components have equal masses and radii. Therefore,

we may use H(xl i 2 ) = 6(x1 -x 2 ) in (16). Then

( YI \ B)= O for yCi (19)

which makes it necessary to have yl = x2 and therefore il = ~/2.

In the same way, using the function $(x2 - x
1
) we can infer

that i2 = v/2. The conclusion is that we can predict the same

velocity xk for both components if they have the same apparent

velocity Yk. As a consequence, their spin axis are perpen-

dicular to the line of sight, Since components of eclipsing

systems are observed in most cases to have Y1 = Y
2
, it follows

that ik = 1/2 and x
1

= x
2

is a possible solution. It is seen there-

fore that the spin parallelism problem is reduced to assuming

only that the axes of rotation have the same aximuthal angle.

Moreover since the orbital plane contains the line of sight

(essentially) the assumption that both axes are perpendicular

to that plane is better supported from an epistemologic

point of view.
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The situation sketched above may appear to be paradoxical,

for one may not see a good reason to not have, say, Y2 < x2'

if x
1

= x2. The fact is that the present method has a

different nature from that based on the probability density

sin i. The reader is referred to Paper I.

VII. Summary

a) The Theory

The method of studying statistically the rotation of

the stars is based on the consideration that the equatorial

velocities are limited by the critical velocity v obtained-o

when the centrifigal force balances the gravity at the

equator.

The consequence is that the probability density function

t(i) which describes the frequency of occurrence of the

inclination i of the axis of rotation to the line of sight

is

W (i) = sb |I F(y)(i-y ) y (a)

Jo

where y = x sin i, and x = v/vo, if v is the linear velocity

in km/sec. Here F(y) is the observed frequency distribution

of y.
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Relation (a) depends on the critical velocity v which-o

is known for main sequence stars (Hardorp and Scholz 1971).

Any upper limit to the true velocities smaller than v0 may

however be assumed. In the case of the Ap stars a value of

100 km/sec is well representative of the largest speed they

actually may have (Bernacca and Perinotto 1971).

For an analysis of the rotation of double stars we have

'0r51 (SAILy(iLiL )= siiA~I X'M st iJ i y F Y, '/ J2) (

where F(yl, Y2) is the frequency distribution of the apparent

velocities Yk(k = 1, 2) of the components.

The bivariate frequency distribution W(xl, x2 ) of the

true velocities xk = Xvk/vok can be readily derived by the

procedure described in Section III.

b) Rotational Correlation in Visual Binaries

The apparent velocities vl sin i and v sin i for 34

visual systems from the Slettebak (1963) paper give a corre-

lation ratio of 0.75. The probability that this ratio is due

to the chance is 10 6 The method of analysis applied to

such a sample gives a bivariate frequency distribution W(xl, x2 )
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whose characteristics are the following. The centroid is

at x1 = x2 = 0.5 and the standard deviations are a, 
=

G2 = 0.26.

The mode x2M of the distribution of the secondaries for any

given value of x
1
for the primaries is a linear relation

X2M = x 1 ; therefore, the probability is maximum for having

equal velocities xl and x2, or, if the stars have the same

spectral type, equal velocities 1 and -2' The mean velocity

x2. of the secondaries is nearly a linear function of the

velocity xl of the primaries with x2(0) = 0.2 and x2(1) = 0.8.

It may be that the sample studied is made up of two popula-

tions, slow and fast rotators. If this could be established

on the basis of a richer sample, then the analysis of rota-

tional coupling should be carried out within each group.

In Table 5 we give the expected average value of -2 for a set

of values of -1' The table is based on the regression line

x2(xl) shown in Figure 8 and on Table 1. Table 5 may be used

for visual systems having components of the same spectral

type. An analogous table for any combination of spectral

types can be easily derived by using Figure 8 and Table 1.

We recall that the items in Table 5 are in the Slettebak

system.

c) The Spin Parallelism Problem

The equations presented in this investigation reduce

considerably the number of degree,of freedom in the assumption
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that the spin axes of components of eclipsing systems are

perpendicular to the orbital plane, thus lending support to

the existing inferences about synchronism.
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TABLE 1

Characteristic Maximum Rotational Velocities (km/sec)
in the Slettebak System for Main-Sequence Single Stars

Spectral Type (v sin i) Spectral Type (v sin i)°

BO-B1 300 A6-A8 250

B2-B3 325 A9-F0 200

B4-B5 400 Fl-F3 225

B6 425 F4 150

B7-B9 375 F5-F6 125

A0-A2 350 F7 100

A3-A4 325 F8 .50

A5 275 F9 25



TABLE 2

Rotational Velocities (km/sec) of 34 Visual Systems
Observed by Slettebak (1963)

ADS m ADS m
(BDS) v Sp. Type v sin i ADSv Sp. Typei

824 A 6.0 B9.5 V 300 899 A 5.6 AO V 250
B 6.8 A1 V 250 B 5.8 B9 V 250

1683 A 6.1 B9 V 200 2270 A 5.4 B7 V 200
B 6.7 A1 V 300 B 6.8 B9 V 200

(1731) A 7.1 Al V 100 2582'A 6.5 A2 V 100
B 7.5 A3 V 250 B 6.9 A3 V 100

(2313) A 4.3 B3 V 150 3597 A 6.6 B8 V 350
B 7.3 A1 V 100 B 7.1 B9 V 350

3962 A 5.0 B1 V 350 4068 A 5.9 B9 V 150
B 7.1 B3 V: 350 B 6.7 AO V 200

4182 A 4.7 BO.5 V s25 4262 A 6.8 B7 V 200
B 5.7 B1 V s25 B 7.4 B9.5 V 120

4773 A 6.1 A2 V 120 6255 A 4.5 B6 V 60
B 6.9 A5 V 120 B 4.7 B7 V 200

7979 A 4.5 AO V 180 8630 A 3.7 FO V •25
B 6.4 A1 V 250 B 3.7 FO V s25

(6498) A 6.7 F2 V •25 9247 A 5.1 AO V 100
B 7.1 F3 V s30 C 6.8 A9 V 70

9258 A 6.4 A2 V 80 9277 A 7.0 AO V 100
B 7.0 A4 V 60 B 7.5 AO V 80

9 c Lib 2.9 A3 V 80 9474 A 6.8 FO IV 80
8 a Lib 5.3 F2 V . •25 B 7.6 F2 IV •30

9701 A 4.2 FO IV 80 10129 A 5.6 B9 V 220
B 5.3 FO IV-V 70 B 6.6 AO V 250

10149 A 5.7 AO V 140 10750 A 6.3 AO IV-V 90
B 6.8 A5 V 80 B 6.7 AO V 120

11089 A 5.9 A3 V 180 11593 A 6.1 B3 V 130
B 6.0 A3 V 180 B 7.1 B8 V 150

11635 A 5.1 A5 V 200 11853 A 4.5 A5 V 130
B 6.2 A7 V 150 B 4.9 A7 V 220

11870 A 6.6 AO V 100 13087 A 5.8 B6 V 360
B 7.4 A2 V 150 B 6.5 B8 V 250

13902 A 6.1 A2 V 350 15147 A 6.3 Al V 100
B 6.9 A8 V 150 B 7.7 F2 V 30



TABLE 3

Frequency Distribution of the Fractional Velocity
Yk = vk sin k/vok. of Visual Systems,
Where Yok is the Critical Velocity

Primaries Secondaries

Mean 0.45 0.46

St. deviation 0.26 0.27

Skewness 0.58 0.07

Kurtosis -0.32 -1.05



TABLE 4

Bivariate Frequency Distribution W(x , x2 ) of the True Velocities
Xk = vok sin ik/Vok of Visual Binaries

X2
x

1
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0 1.848 1.706 1.342 0.899 0.514 0.250 0.104 0.036 0.011 0.003 0.001

0.1 1.724 1.867 1.724 1.356 0.909 0.519 0.253 0.105 0.037 0.012 0.003

0.2 1.406 1.787 1.935 1.787 1.406 0.942 0.538 0.262 0.109 0.038 0.011

0.3 0.982 1.465 1.863 2.018 1.863 1.465 0.982 0.561 0.273 0.114 0.040

0.4 0.581 1.016 1.516 1.927 2.088 1.927 1.517 1.016 0.581 0.282 0.118

0.5 0.286 0.588 1.030 1.536 1.952 2.115 1.952 1.536 1.030 0.588 0.286

0.6 0.118 0.282 0.581 1.016 1.517 1.927 2.088 1.927 1.516 1.016 0.581

0.7 0.040 0.114 0.273 0.561 0.982 1.465 1.863 2.018 1.863 1.465 0.982

0.8 0.011 0.038 0.109 0.262 0.538 0.942 1.406 1.787 1.935 1.787 1.406

0.9 0.003 0.012 0.037 0.105 0.253 0.519 0.909 1.356 1.724 1.867 1.724

1.0 0.001 0.003 0.011 0.036 0.104 0.250 0.514 0.899 1.342 1.706 1.848

0.767 0.955 1.116 1.226 1.265 1.226 1.116 0.955 0.767Hk(xk
) 0.579 0.579



TABLE 5

Expected Average Value of the Rotational Velocities v2 (km/sec) of Secondaries

of Visual Binaries as a Function of the Velocity vl of the Primary.

Both Components have the same spectral type.

_y(km/sec) BO-B1 B2-B3 B4-B5 B7-B9 AO-A2 A3-A4 A6-A8 A9-FO

50

100

150

.200

250

300

350

80

115

150

185

220

240

85

125

155

190

225

250

100

130

165

200

235

270

300

95

125

160

195

230

265

290

90

120

155

190

230

260

280

85

125

155

190

225

250

70

105

145

180

200

65

100

115

160



Captions to the Figures

Fig. 1. The conditioned distribution *( ji1 ) for iL = 30

600, 900 is shown by the solid curves in the case of

a model distribution p(1', 02) = 4/i cos 261. 6(e2 - 01).

The angle Ok is defined by vk sin ik = -vok sin Ok'

where mk is the equatorial velocity and vok the break-up

limit,,(k = 1, 2). The dashed line is the probability

density function sin i based on geometrical considerations

only.

Fig. 2. Characteristic largest observed rotational velocities

for main-sequence single stars (dots) and spectroscopic

binaries (open circle). The latter is biased by inclu-

sion of stars whose duplicity is not fully established.

Fig. 3. Plot of the apparent velocities of the secondaries

(-U2 = 2 sin '2) vs. the apparent velocities of the

primaries (1u = s1 sin 1i) for 34 visual systems from

the paper by Slettebak (1963). The straight lines

are the regression lines. The correlation coefficient

is 0.75.

Fig. 4. The histogram of the apparent velocities Yk = k/Yok

of the components of visual systems is shown with the

statistical errors. It is assumed that no difference

exists between the frequency distribution of the

primaries and that of the secondaries. The dashed curve

is the marginal distribution Hk(xk) of the true

velocities xk = !k/vok . The solid curve is the computed

distribution of the apparent velocities Fk(yk) which

has been fitted to the histogram.



Fig. 5. Array distribution of Y2 for selected intervals of

Y1 given in the form of conditioned histograms. The

dashed curve represents the array frequency function

m (X2 | y1) which produces the function F(Y
2
1 Y1 )

(solid curves) considered to approximate the observations.

Fig. 6. The parameters of the array distribution Q(x21 Y1)

shown in Figure 5 are plotted vs. Y1 with the purpose

to define the functional relationship Xo(y 1) and s(yl).

x0 and s are the mode and the dispersion of a normal

law.

Fig. 7 The conditioned distribution f(yl1 x2 ) (solid curves)

computed by means of f(yll x2 ) H2(x2 ) = Fl(Y 1) H(x2 1 yl)

is shown for the cases x2 = 0.1, 0.5, 0.9. The frequency

function H(xll x2 ) is given by the dashed curve for

X2 = 0.9. The circles represent the function f(yll 0.9)

computed through the integral equation relating H(xll x2 )

and f(yl x2 ). They approximate the same function

f(Y1I x2) independently derived.

Fig. 8. The correlation between x
1
and x2 is described by the

variation of the mode xlM and the dispersion al(x 2 )

of H(xll x2 ) with x2 along With the mean value of xl,

xl, as a function of x2.
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